博客
关于我
torch.topk
阅读量:103 次
发布时间:2019-02-26

本文共 129 字,大约阅读时间需要 1 分钟。

 

import torchinput=torch.Tensor([0.1,0.2]).cuda()k=3v,k=torch.topk(input, k, dim=0, largest=True, sorted=True, out=None)print(v,k)

转载地址:http://qyyk.baihongyu.com/

你可能感兴趣的文章
Netty常见组件二
查看>>
Netty应用实例
查看>>
netty底层——nio知识点 ByteBuffer+Channel+Selector
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty心跳检测
查看>>
Netty心跳检测机制
查看>>
netty既做服务端又做客户端_网易新闻客户端广告怎么做
查看>>
netty时间轮
查看>>
Netty服务端option配置SO_REUSEADDR
查看>>
Netty核心模块组件
查看>>
Netty框架内的宝藏:ByteBuf
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—1.服务端启动流程一
查看>>
Netty源码—1.服务端启动流程二
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—2.Reactor线程模型二
查看>>
Netty源码—3.Reactor线程模型三
查看>>
Netty源码—3.Reactor线程模型四
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>